Damage Propagation Analysis of Electromechanical Actuator H-Bridge Power Stage

Aviation Safety Technical Conference October 22, 2008

Neil.Kunst@RidgetopGroup.com

Ridgetop Damage Propagation Methodology

- Apply fault conditions to each critical component of the EMA H-Bridge, starting at the Gate Driver Amplifiers (D1) and progressing to the MOSFET Switches (D2) and Coil Windings (D3) of each BLDC motor phase
- Conduct lab experiments to acquire and characterize the following error associated with each fault condition and resulting stress effect on downstream components
- Analyze Fault-to-Failure Progression (FFP) signatures of acquired testbed data and feed lab results back into a high-fidelity Simulink model of the system

H-Bridge Gate Driver Latch-up Failure

- Prevalent failure mode of gate driver IC is SCR latch-up of parasitic diode structures*
- Bootstrap configuration of gate driver common for highpower motor drive applications
- Gate driver latch-up may be exacerbated by degradation of bootstrap capacitor
- Test fixture constructed to duplicate latch-up failure on single phase of BLDC motor drive

*International Rectifier Design Tip DT97-3

Gate Driver Bootstrap Test Fixture

- ➤ Gate Driver Test Fixture:
 - IR2102S Gate Driver IC
 - IRFZ44N Power MOSFETs
- ➤NI USB DAQ Card:
 - Bus Powered USB-6212
 - Driver LIN and HIN Control

V_S Undershoot / C_{BOOT} Overcharge

- ➤ Floating supply (V_{BS}) formed by bootstrap diode and capacitor is used to power high-side level shifter and gate driver
- ➤ High-side MOSFET switch turn-off events cause current flow in low-side freewheeling protection diode
- ➤ Diode voltage drop, along with stray low-side MOSFET switch inductance, pulls floating supply return node (V_S) below ground
- ➤ Excessive V_S undershoot results in overcharging of C_{Boot} and subsequent breakdown/latch-up of parasitic diode (D1)

Nominal vs. Degraded Bootstrap Capacitor

Nominal (0.5 µF)

Degraded (< 0.1 µF)

Rising Edge

Rising Edge

Falling Edge

Falling Edge

- > Gate driver circuit behavior with nominal vs. degraded bootstrap capacitor
- > Latch-up observed on VB pin with bootstrap capacitance less than 0.1 μF
- > Pronounced VS fall-time shift conducive to gate driver circuit prognostics

Gate Driver Latch-up Failure Analysis

- Overcharging of bootstrap capacitor leads to latch-up of high-side gate driver output
- Bootstrap capacitor degradation reduces gate driver immunity to latch-up failure
- If latched off, gate driver malfunction is manifested in erratic BLDC motor operation
- ➤ If latched on, malfunction can lead to permanent MOSFET switch and/or gate driver IC damage

Ridgetop Damage Propagation Methodology

- Apply fault conditions to each critical component of the EMA H-Bridge, starting at the Gate Driver Amplifiers (D1) and progressing to the MOSFET Switches (D2) and Coil Windings (D3) of each BLDC motor phase
- Conduct lab experiments to acquire and characterize the following error associated with each fault condition and resulting stress effect on downstream components
- Analyze Fault-to-Failure Progression (FFP) signatures of acquired testbed data and feed lab results back into a high-fidelity Simulink model of the system

Ridgetop Motion Control Laboratory

Technosoft Testbed

H-Bridge Damage Propagation Experiment

- Modify Technosoft ISM4803 Servo Drive to facilitate H-bridge damage propagation experiments:
 - IRFZ44N D2PAKs replaced with TO-220 packages, i.e., form factor supported by ARC MOSFET aging lab
 - SOIC-8 socket installed to enable removal/replacement of IR2102S gate driver IC
- Analyze effect of damaged gate driver circuit on low- and high-side MOSFET switches
- Correlate model parameters and simulation results with testbed

Modified ISM4803 Servo Drive

Testbed Results

Healthy Response - No Fault Present

Damage Response - Phase A MOFSETs Shorted

Ridgetop Damage Propagation Methodology

- Apply fault conditions to each critical component of the EMA H-Bridge, starting at the Gate Driver Amplifiers (D1) and progressing to the MOSFET Switches (D2) and Coil Windings (D3) of each BLDC motor phase
- Conduct lab experiments to acquire and characterize the following error associated with each fault condition and resulting stress effect on downstream components
- Analyze Fault-to-Failure Progression (FFP) signatures of acquired testbed data and feed lab results back into a high-fidelity Simulink model of the system

Simulink Model

MOSFET Open/Short Fault Injection

- ➤ For each phase, a packed fault code is composed by user and injected into model hierarchy through the H-bridge block
- ➤ Packed fault code is passed to both low- and high-side MOSFET switch blocks where it is decoded and executed

Fault Decode:

Bit 0..3 = FL (Fault Low) Bit 4..7 = FH (Fault High)

Fault Codes:

0 = NONE

1 = SHORT

2 = OPEN

 $FPACK = FH \times 16 + FL$

Simulation Parameters / Fault Codes

Simulation Parameters*	
Parameter	Value
R =	0.478 Ω
L =	1.926 mH
Kemf =	0.0355 Vrms/RPM
Kt =	0.0355 Nm/A
B =	0.00025 Nm/RPM
J =	0.0000054 kg*m^2
Jext =	N/A kg*m^2

Fault Codes	
Code	Description
00h	High-Side Normal, Low-Side Normal
01h	High-Side Normal, Low-Side Short
02h	High-Side Normal, Low-Side Open
10h	High-Side Short, Low-Side Normal
11h	High-Side Short, Low-Side Short
12h	High-Side Short, Low-Side Open
20h	High-Side Open, Low-Side Normal
21h	High-Side Open, Low-Side Short
22h	High-Side Open, Low-Side Open

^{*}Simulation parameters correlated with Technosoft testbed

Simulation Results

Healthy Response - No Fault Present

Damage Response - Phase A MOFSETs Shorted

H-Bridge Damage Propagation Analysis

- ➤ Gate driver amplifies TTL or CMOS PWM commutation signals to levels required to switch H-bridge MOSFETs
- Degradation and transient electrical/environmental conditions lead to gate driver open-circuit failures
- Open-circuit driver outputs leave both MOSFET gate inputs floating
- Floating gate inputs can cause both low- and high-side H-bridge switches to turn on simultaneously
- ➤ In resistive mode, MOSFETs are vulnerable to current impulses and drain-to-source short circuit damage

Thank You

